
 
 
 
 
 
 

AQA Computer Science A-Level 
4.12.1 Functional programming 

paradigm 
Advanced Notes  

www.pmt.education



Specification: 
 
4.12.1.1 Function type 

Know that a function, f, has a function type f: A → B (where the type 
is A → B, A is the argument type, and B is the result type).  

Know that A is called the domain and B is called the co-domain.  
Know that the domain and co-domain are always subsets of objects 

in some data type. 
Loosely speaking, a function is a rule that, for each element in some 

set A of inputs, assigns an output chosen from set B, but without 
necessarily using every member of B. For example, f: {a,b,c,…z} → 
{0,1,2,…,25} could use the rule that maps a to 0, b to 1, and so on, using all 
values which are members of set B.  

The domain is a set from which the function’s input values are 
chosen.  

The co-domain is a set from which the function’s output values are 
chosen. Not all of the codomain’s members need to be outputs. 

 
4.12.1.2 First-class object 

Know that a function is a first-class object in functional programming 
languages and in imperative programming languages that support such 
objects.  

This means that it can be an argument to another function as well as 
the result of a function call.  

First-class objects (or values) are objects which may:  
• appear in expressions  
• be assigned to a variable  
• be assigned as arguments  
• be returned in function calls.  

For example, integers, floating-point values, characters and strings 
are first class objects in many programming languages. 
 
 

www.pmt.education



4.12.1.3 Function application 
Know that function application means a function applied to its 

arguments.  
The process of giving particular inputs to a function is called function 

application, for example add(3,4) represents the application of the function 
add to integer arguments 3 and 4. The type of the function is f: integer x 
integer → integer where integer x integer is the Cartesian product of the set 
integer with itself. Although we would say that function f takes two 
arguments, in fact it takes only one argument, which is a pair, for example 
(3,4). 
 
4.12.1.4 Partial function application 

Know what is meant by partial function application for one, two and 
three argument functions and be able to use the notations shown opposite. 
The function add takes two integers as arguments and gives an integer as 
a result. Viewed as follows in the partial function application scheme: add: 
integer → (integer → integer) add 4 returns a function which when applied 
to another integer adds 4 to that integer. The brackets may be dropped so 
function add becomes add: integer → integer → integer The function add is 
now viewed as taking one argument after another and returning a result of 
data type integer. 
 
4.12.1.5 Composition of functions 

Know what is meant by composition of functions. The operation 
functional composition combines two functions to get a new function. Given 
two functions f: A → B g: B → C function g ○ f, called the composition of g 
and f, is a function whose domain is A and co-domain is C. If the domain 
and co-domains of f and g are ℝ, and f(x) = (x + 2) and g(y) = y3 . Then g ○ 
f = (x + 2)3 f is applied first and then g is applied to the result returned by f.  

www.pmt.education



Functions 
According to the AQA specification, ​a ​function​ is a ​rule ​ that, for each ​element ​ in some 
set A​ of ​inputs ​, ​assigns​ an ​output​ chosen from ​set B​, but without necessarily using 
every member of B ​. 
  
An ​argument​ (a piece of data) is passed to a​ function​, and the ​rule​ is applied to the 
argument ​, creating the ​return value ​(the output). An ​argument ​could be a ​number​ (0, 1, 
3.4, -8 e.t.c), a ​character​ (“a”, “D”, “!” e.t.c) or any​ other data type​. The​ argument​ could 
even be ​another function ​ (if the language supports it). The ​function ​will ​specify​ what 
data type ​is required for the ​argument ​. 
 
Function Example 1: 
A function is called DoubleMe. This​ outputs​ the double of 
the ​input​. The inputs (set A) could be the set of ​natural 
numbers​ {0, 1, 2, 3, 4….}, and therefore the output (set B) 
could be the set of ​even natural numbers ​ {0, 2, 4, 6, 8 ….}.  
 

 
Of course, the set of even 
natural numbers is a ​ proper 
subset​ of the set A. 
Therefore set B could 
otherwise be the set of ​natural numbers ​, although the 
odd items​ would ​never​ be ​outputted​.  
 
The function DoubleMe could be called with a value of 6. 
The output would be the double of 6, which is 12. 6 is 
called the ​argument ​, and 12 is the​ result​. Here is the 
code for such an interaction. 
 
DoubleMe 6 
>> 12 
 

Function Example 2: 
A function is called HalfMe. This ​outputs ​half of the​ input​. 
The ​input​ (Set A) could be the set of​ positive integers ​  {0, 1, 
2, 3, 4….} and the ​output​ (Set B) could be drawn from the 
set of​ real ​numbers. Most of the real numbers will never be 

www.pmt.education



outputted (e.g. 3.201 is not half of an integer), but the real numbers is still an 
appropriate set. 
 
Below is an example of how HalfMe might be used. 
 
HalfMe 200 
>> 100 
 
HalfMe 5 
>> 2.5 
 
Function Example 3: 
A function is called LetterPosition. This ​outputs​ the ​position ​of each letter in the 
alphabet. The inputs - Set A - would be the ​English Alphabet ​ {A, B, C, … Z} and the 
output - Set B - would be the set of ​whole numbers​ (integers) between 1 to 26 inclusive 
{1, 2, 3, … 26}. 
 
Here is an example of how LetterPosition could be used. 
 
LetterPosition N 
>> 14 
 

Function Types 
All functions have a ​function type​. If ​f ​is the function, ​A​ is the input and ​B​ is the output, 

the function type can be defined as the following: 

 
 A is known as the​ argument​ type, and B is the​ ​result 
type​. This means function f ​maps​ ​A to B​. In computer 
science, we describe the the ​ set of inputs​ (A) as the 
domain ​, and the ​set of outputs​ (B) as the​ co-domain​. 
Remember, not all members of the co-domain have to be 
used as outputs. The domain and co-domain are always 

subsets​ of ​objects​ in ​some data type​, as further explained below. 
 
 
 
 

www.pmt.education



Function Types Example 1:  
The function f returns double the input. Hence, this ​function type​ could be described as 
the following: 

 
The set of ​natural numbers ​ is the ​domain​ and the set of ​even natural numbers​ is the 
co-domain​. 

 
In this example, the programmer only allows ​positive integers 
to be doubled. This function could ​not​ be used to double a 
negative number or a decimal value. 
 
The ​domain​ is a​ subset ​of the ​natural numbers ​, and a ​proper 
subset​ of the ​integers​ and ​reals​. The ​co-domain ​is a ​proper 
subset​ of the ​naturals​, ​integers ​ and ​reals​. 
 
However, the functionality of f could be changed if it had a 
different ​function type​. 

 
If f was declared with this function type​ any real​ number could 
be doubled including negatives and decimal values. 
 
 
Function Types Example 2:  
The function g ​returns​ half of the​ input​. It’s ​function type​ could be described as below: 

 
The set of ​natural numbers ​ is the ​domain​ and the set of ​reals​ is the ​co-domain​.  

www.pmt.education



 
This function can​ only​ be used to half positive integers. Therefore ​not all​ of the reals 
could be used as ​ outputs​ (e.g. negative numbers).  
 
The​ domain​ is a ​subset​ of the ​natural numbers ​, and a​ proper subset ​ of the​ integers​ and 
reals​. The ​co-domain​ is a ​subset​ of the ​reals​.  
 
If the programmer wanted to only half integers, the domain could be the set of integers. 

, 
 
If the programmer defined the function as 

 
then any non-imaginary number could be halved by the function. 
 

First-class object 
Taken from the specification: 

First-class objects (or values) are objects which may:  
• appear in ​expressions  
• be assigned to a ​variable  
• be assigned as ​arguments  
• be returned in ​ function calls 

 ​In functional programming, ​functions​ are ​first-class objects​. Some 
imperative ​ languages also support functions as first-class objects. 
Hence, functions can be ​passed as arguments ​ or r​eturned as the 
result of another function​. Examples of first-class objects include 
integers ​, ​floating-point values​, ​characters ​and ​strings​. 
 
 
 

www.pmt.education



Function application 
Function application is just a fancy term for ​applying ​ the ​function rule ​to the ​arguments 
of the function.  
 
Function Application Example 1: 
MultiplyUs(x,y) returns the product of x and y. First, we need a function type declaration. 
In this instance we will only be multiplying integers - two integers multiplied together will 
always produce another integer. 

 
The first two “int”s signify the inputs, and the last int is the output. 

 
 
Next we need to specify what the function will be doing with the inputs. 

 
The x and y represent the parameters - variables created when the function is declared, 
into which the arguments (data) is passed. 
 
 
 
 
 
 
 

www.pmt.education



Now we are ready for​ function application ​. In this instance, the arguments are 3 and 5. 

 
 
Although it may look like the multiply function is taking ​two arguments ​, it is in fact​ only 
taking ​one​ - ​a pair​. Every function in a​ functional programming ​language (e.g. Haskell) 
only takes ​one argument ​. How can this be true? If we look back at the ​type declaration ​, 
it clearly has two inputs. However, the ​type declaration ​ can also be written as this: 

 
Now we have ​ two functions​, each with ​one input ​ and ​one output ​. 

 
 
Function 1 is called first. 

 

www.pmt.education



As you can see, the first function has ​created a new function​ based off the​ input​. The 
output ​of MultiplyUs 3 is MultiplyYBy3 5 (remember in this example y = 5). This new 
function is called. 

 
The​ output​ is 15. All ​inputs​ have been dealt with so MultiplyUs 3 5 returns 15. 
 

Partial function application 
Partial function application​ takes advantage of the ​inability of a function ​ to take ​more 
than one input ​. In partial function application, one of the ​arguments ​ is fixed, leading to a 
more ​restricted​, ​specialised​ function. 
  
Partial function application example: 
The function Add3Numbers should add the three numbers given as ​ arguments​ and 
output​ the total. Add3Numbers could be created as thus: 

 
In this case, the ​inputs​ and ​outputs ​are ​real​. This function can take decimals and 
negative numbers as arguments.  Add3Numbers could be called as thus: 

 
 
However, we could use ​partial function application ​ to ​bind​ one of the ​arguments​. 
Consider the new function Add3ToTwoNumbers. This new function should take a pair of 
arguments ​, add them together and then add 3, before returning the ​output​. We could 
write a ​new definition ​for this function, or we could use ​partial function application ​ to 
modify ​Add3Numbers. 

www.pmt.education



 
Calling Add3Numbers 3 would ordinarily cause an error, as there are not enough inputs. 
However, by defining Add3ToTwoNumbers in terms of Add3Numbers, 
Add3ToTwoNumbers can be called with ​two additional inputs​. 

 
Composition of functions 

Functional composition ​ is the act of ​combining two functions ​ to create a ​new function​. 
The benefit of this is that the user is able to use the functions both ​separately​, and in 
conjunction​. ​Any two ​functions can be combined as long as the ​domain ​ of one of the 
functions is the ​same ​as the ​co-domain ​of the other. The symbol  ○  indicates that two 
functions are being combined e.g. Add2  ○  DoubleMe. The function works from the 
inside out​. Hence in the previous example, the input would be ​doubled first​, then ​2 
would be added ​to it. 
 
Composition of functions Example: 
Function f takes an ​argument pair ​. It adds them together, and then doubles the answer. 

 
 
 
The function g squares its input. 

 
 

www.pmt.education



 
How can f and g be combined? 

 
To be combined, the ​domain ​ of one function must be the ​same ​as the ​co-domain ​ of the 
other function.  
 
The ​domain​ of f is a ​pair of reals ​; the co-domain of g is ​one real ​. Therefore they ​cannot 
be combined as f  ○  g. 
 
The ​domain​ of g is a ​real​; the ​co-domain ​ of f is also a​ real​. Therefore they ​can​ be 
combined as g  ○  f. 
 
The​ domain ​of g  ○  f is the​ domain ​ of f (​a pair of reals ​), and the​ co-domain​ of g  ○  f is 
the ​co-domain ​ of g (​a single real ​). 
 
Calling g  ○  f with input (3,5) would produce the following: 

 

www.pmt.education


